DIVISION TWELVE

Declaration Owner

Division Twelve
1450 Birchmount Rd
Toronto, ON, M1P 2E3
1.800.724.5665 | www.division12.com

Product

Daytrip

Functional Unit

One unit of seating to seat one individual, maintained for a 10 year period

EPD Number and Period of Validity

SCS-EPD-08067

EPD Valid: July 18, 2022 through July 17, 2027

Product Category Rule

BIFMA PCR for Seating: UNCPC 3811, Version 3.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration Owner	Division Twelve		
	1450 Birchmount Rd, Toronto, ON, M1P 2E3		
	Daytrip		
	SCS-EPD-08067		
	EPD Valid: July 18, 2022 through July 17, 2027		
	SCS Global Services		
Declaration URL Link	https://www.scsglobalservices.com/certified-green-products-guide		
	Gerard Mansell, Ph.D., SCS Global Services		
	OpenLCA 1.10.3 and ecoinvent v3.8 database		
	□ internal 🛭 external		
	Ilromas Sloin		
	Thomas P. Gloria, PhD., Industrial Ecology Consultants		
	BIFMA PCR for Seating: UNCPC 3811, Version 3.		
	Thomas P. Gloria, PhD., Industrial Ecology Consultants		
	□ internal 🛚 external		
	Ilonas Chin		
	Thomas P. Gloria, PhD., Industrial Ecology Consultants		

Disclaimers: This EPD conforms to ISO 14025, 14040, and 14044.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

Table of Contents

About Division Twelve	4
Product Description	4
Material Composition	4
Key Environmental Parameters	5
Life Cycle Assessment Cycle	5
Product Life Cycle Flow Diagram	5
Life Cycle Inventory	6
Life Cycle Impact Assessment	6
Additional Environmental Information	8
Supporting Technical Information	9
References	13

About Division Twelve

Bent right here in North America, each and every thing we make is the product of durable materials, modernist design, and oh-so-careful craftsmanship. From prototype to final installation, we're there every step of the way, to ensure our pieces exceed your expectations, every single time. But no matter what we do, the best part of the things we make is that you can make them your own. They're versatile, timeless, and come in a variety of finishes you can pick and choose. We do what we do, to let you do you.

Product Description

Daytrip™ is superbly simple. Like, vanilla ice cream simple. It's got everything you need and nothing you don't. It is steel stool with an upholstered seat that can be used indoor at contract, hospitality and retail establishments.

Material Composition

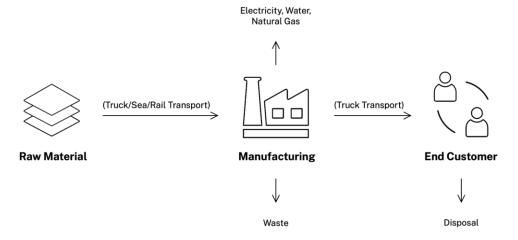
Table 1. Material composition of Daytrip. Results are shown per unit of seating and as a percent of total.

Material Type	Material Resource	Amount (kg/unit of seating)	Amount (%)
Steel	Non-renewable	8.53	93%
Wood	Renewable	0.410	4.5%
Plastics, Nylon, Rubber	Non-renewable	7.64x10 ⁻²	0.83%
Leather	Renewable	7.90x10 ⁻²	0.86%
Other	Non-renewable	8.50x10 ⁻²	0.93%
TOTAL		9.18	100%

Key Environmental Parameters

Table 2. Summary of key environmental parameters.

Parameter	Value	Unit
Global Warming Potential	50.8	kg CO2e
Primary Energy Demand	666	МЈ
Recycled Content	77%	%


Life Cycle Assessment Cycle

The system boundary is cradle-to-grave and includes resource extraction and processing, product manufacture and assembly, distribution/transport, use and maintenance, and end-of-life. The diagram below illustrates the life cycle stages included in this EPD.

Product Life Cycle Flow Diagram

The diagram below is a representation of the most significant contributions to the life cycle of the Daytrip. This includes resource extraction, raw material processing, component manufacturing, transportation, assembly of chair, use and maintenance, and end-of-life.

Life Cycle Inventory

The resource use and emissions from each step of the product life cycle are summed to obtain the life cycle inventory results. Table 3 shows inventory categories for energy and water consumption.

Table 3. Inventory categories for energy and water consumption.

Results are shown for one unit of seating to seat one individual over a 10 year time period.

Parameter	Units	Total (per 1 unit of seating)
Primary Energy Demand	MJ	666
Non-Renewable Energy, Fossil Fuels	MJ	510
Non-Renewable Energy, Nuclear	MJ	73.9
Renewable Energy	MJ	81.5
Freshwater Consumptions	m³	2.30

Life Cycle Impact Assessment

Impact category indicators are calculated using the TRACI 2.1 characterization methods, including acidification potential, eutrophication potential, smog potential, ozone depletion potential and global warming potential based on IPCC, in accordance with the BIFMA PCR. Note, biogenic carbon uptake and biomass CO_2 emissions are not included.

Table 4. Life cycle impact assessment results for the Daytrip.

Results are shown for one unit of seating to seat one individual over a 10 year period.

Impact Category	Units	Raw Material Extraction & Processing	Production (Manufacturing & Assembly)	Distribution, Use & Maintenance	End-of-Life	Total
Global Warming Potential, 100 year time horizon	kg CO₂ eq	42.6	5.02	2.62	0.560	50.8
Acidification Potential	kg SO₂ eq	0.179	6.72x10 ⁻³	1.16x10 ⁻²	2.58x10 ⁻³	0.200
Eutrophication Potential	kg N eq	0.221	3.79x10 ⁻³	4.12x10 ⁻³	5.45x10 ⁻³	0.235
Smog Formation Potential	kg O₃ eq	1.85	0.256	0.279	7.17x10 ⁻²	2.46
Ozone Depletion Potential	kg CFC-11 eq	2.47x10 ⁻⁶	5.07x10 ⁻⁷	5.89x10 ⁻⁷	1.03x10 ⁻⁷	3.67x10 ⁻⁶

Additional Environmental Information

Daytrip is certified by Carbonfund.org to be carbon neutral through their Carbonfree® product certification.

Division Twelve has reduced emissions at every stage of our processes – from design and the materials we use to production, distribution, and end-of-life. Throughout the life cycle of the chair, there is inevitable carbon that can't be eliminated. Division Twelve completely offsets this carbon with investments in third-party verified carbon offset projects through Carbonfund.org. We have carefully chosen to support three projects.

1. The US Truck Stop Electrification Project

Daytrip seating, along with all Division Twelve products, are transported via truck to reach the final customer. Division Twelve is supporting this project to specifically address the carbon emissions of our product transportation.

2. The Minnesota Forestry Improvement Project

Many of Division Twelve's products contain wood components and it is important to us to consistently measure and manage our natural resource use. Supporting this project means contributing to the management and improvement of Minnesota woodlands.

3. The Aqua Clara Water Filtration Program

Division Twelve believes clean water is a basic human right that every person should have access to. This water filtration program provides Kenyan communities with access to safe drinking water while generating employment opportunities and reducing deforestation.

For more carbon neutral information regarding Daytrip seating, please visit www.division12.com.

Daytrip seating has been certified by SCS Global Services under BIFMA's multi attribute sustainability standard: LEVEL*.

Daytrip seating has been certified by SCS Global Services for Indoor Air Quality achieving Indoor Advantage TM Gold. This means they meet rigorous and comprehensive air quality standards.

We believe in responsible forestry and ethically sourced materials. Division Twelve utilizes Forest Stewardship Council® wood materials, whenever possible.

Supporting Technical Information

Unit processes are developed with OpenLCA 1.10.3 LCA software, drawing upon data from multiple sources. Primary data were provided by Division Twelve for their manufacturing processes. The primary sources of secondary LCI data are from the Ecoinvent 3.8 database and published literature.

Table 5. Data sources used for the LCA study.

Component	Material Dataset	Data	Publication
		Source	Date
PRODUCT			
Wood	medium density fibreboard production, uncoated medium density fibreboard Cutoff, S/RoW	EI v3.8	2021
	plywood production plywood Cutoff, S/RoW	EI v3.8	2021
Steel	steel production, electric, low-alloyed steel, low-alloyed Cutoff, S/RoW	EI v3.8	2021
	steel production, converter, low-alloyed steel, low-alloyed Cutoff, S/RoW	EI v3.8	2021
	metal working, average for steel product manufacturing metal working, average for steel product manufacturing Cutoff, S/RoW	EI v3.8	2021
Plastics	polyethylene production, high density, granulate polyethylene, high density, granulate Cutoff, S/RoW	EI v3.8	2021
	polyethylene production, low density, granulate polyethylene, low density, granulate Cutoff, S/RoW	EI v3.8	2021
	injection moulding injection moulding Cutoff, S/RoW	EI v3.8	2021
	polyurethane production, flexible foam polyurethane, flexible foam Cutoff, S/RoW	EI v3.8	2021
	polyethylene terephthalate production, granulate, amorphous polyethylene	EI v3.8	2021
	terephthalate, granulate, amorphous Cutoff, S/RoW		
Nylon	nylon 6-6 production nylon 6-6 Cutoff, S/RoW	EI v3.8	2021
Rubber	synthetic rubber production synthetic rubber Cutoff, S/RoW	EI v3.8	2021
Leather	Leather (/kg)	Notarnicola, et al; El v3.8	2011; 2021
Other	Zamak	EI v3.8	2021
	coating powder production coating powder Cutoff, S/RoW; powder coating, steel powder coat, steel Cutoff, S/RoW	EI v3.8	2021
	powder coating, steel powder coat, steel Cutoff, S/RoW	EI v3.8	2021
PACKAGING			
Plastic film	packaging film production, low density polyethylene packaging film, low density polyethylene Cutoff, S/RoW	EI v3.8	2021
TRANSPORT			
Diesel truck	transport, freight, lorry 16-32 metric ton, EURO4 transport, freight, lorry 16-32 metric ton, EURO4 Cutoff, S/RoW	EI v3.8	2021
Diesel rail	transport, freight train, diesel transport, freight train Cutoff, S/RoW	EI v3.8	2021
Ocean freighter	transport, freight, sea, container ship transport, freight, sea, container ship Cutoff, S/GLO	EI v3.8	2021
RESOURCES			
Grid electricity	market for electricity, medium voltage electricity, medium voltage Cutoff, S/CA-ON	EI v3.8	2021
Heat - natural	heat production, natural gas, at industrial furnace >100kW heat, district or industrial, natural gas Cutoff, S/RoW	EI v3.8	2021

Data Quality

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The most recent available data are used, based on other considerations such as data quality and similarity to the actual operations. Typically, these data are less than 5 years old (typically 2016). All of the data used represented an average of at least one year's worth of data collection, and up to three years in some cases. Manufacturer-supplied data (primary data) are based on annual production for 2019-20.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Electricity use for product manufacture is modeled using representative data for the US. Surrogate data used in the assessment are representative of global or European operations. Data representative of European operations are considered sufficiently similar to actual processes. Data representing product disposal are based on regional statistics.
Technology Coverage: Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations. Representative fabrication datasets, specific to the type of material, are used to represent the actual processes, as appropriate.
Precision: Measure of the variability of the data values for each data expressed	Precision of results are not quantified due to a lack of data. Data collected for operations were typically averaged for one or more years and over multiple operations, which is expected to reduce the variability of results.
Completeness: Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of the products. In some instances, surrogate data used to represent upstream and downstream operations may be missing some data which is propagated in the model. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	Data used in the assessment represent typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used; with a bias towards Ecoinvent v3.8 data where available. Different portions of the product life cycle are equally considered.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.
Sources of the Data: Description of all primary and secondary data sources	Data representing energy use at the manufacturing facilities represent an annual average and are considered of high quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. For secondary LCI data, Ecoinvent v3.8 LCI data are used.
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the products and packaging is low. Actual supplier data for upstream operations were not available and the study relied upon the use of existing representative datasets. These datasets contained relatively recent data (<10 years) but lacked geographical representativeness. Uncertainty related to the impact assessment methods used in the study are high. The impact assessment method required by the PCR includes impact potentials, which lack characterization of providing and receiving environments or tipping points.


Allocation

Keilhauer has two assembly facilities located at 1450 Birchmount Rd., Toronto and 50 Underwriters Rd., Toronto.

The 1450 Birchmount facility is 100% dedicated for cutting upholstery patterns and manufacturing certain upholstered products. For upholstered products manufactured at 50 Underwriters, the pre-processed fabric patterns cut at the Birchmount facility are trucked to 50 Underwriters for final assembly. The primary data for resource use (electricity, natural gas, water, etc.) and waste were allocated to the product based on the product weight as a fraction of the total annual facility production for June 2019 - May 2020 (i.e., mass-based allocation). Electricity use at the manufacturing facilities was modeled using regional inventory datasets for Ontario from the Ecoinvent LCI database.

The steel used by Keilhauer's primary steel fabricator includes some amount of recycled content, which were allocated using the recycled content allocation method (also known as the 100-0 cut off method). Using the recycled content allocation approach, system inputs with recycled content do not receive any burden from the previous life cycle other than reprocessing of the waste material. No credits or avoided burden were allocated to the recycled content material in the study. The amount of recycled content in the steel was provided in a letter from the steel milling facility, where they also confirmed the usage of electric arc method for recycled steel production.

Impacts from transportation were allocated based on the mass of material and distance transported.

System Boundaries

The system boundaries of the life cycle assessment for the Daytrip are cradle-to-grave. A description of the system boundaries for this study are as follows:

- Raw Material Extraction and Processing This stage includes extraction of virgin materials and reclamation of
 non-virgin feedstock. This includes the extraction of all raw materials, including the transport to the
 manufacturing site. Resource use and emissions associated with both the extraction of the raw materials used
 in the product, as well as those associated with the processing of raw materials and component manufacturing
 are included. Impacts associated with the transport of the processed raw materials to manufacturing facilities
 (upstream transport) are also included in this stage.
- Production This stage includes all the relevant manufacturing processes and flows, excluding production of
 capital goods, infrastructure, production of manufacturing equipment, and personnel-related activities. This
 stage includes the impacts from energy use and emissions associated with the processes occurring at the
 manufacturing facilities. Energy use at the facilities is excluded unless used directly for the manufacturing
 process. This stage also includes the production and disposal (including transport) of the product packaging
 materials.
- Distribution, Use, and Maintenance This stage includes the delivery of the seating product to the point of use (downstream transportation) and the use, cleaning and maintenance of the product for a period of 10 years.
 Also included are the impacts from extraction, manufacture and transport of all sundry material for maintenance and cleaning.
- End of life stage The end-of-life stage includes transport of the seating product to material reclamation or waste treatment facilities. Emissions from disposal of seating product components in a landfill or from incineration are included.

Cut-off criteria

According to the PCR, cumulative omitted mass or energy flows within the product boundary shall not exceed 5%. In the present study, except as noted, all known materials and processes were included in the life cycle inventory.

References

- Life Cycle Assessment of Division Twelve Table and Seating Products. SCS Global Services Report. Prepared for Division Twelve. February 2022.
- 2. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- 3. ISO 14040: 2006 Environmental Management Life cycle assessment Principles and Framework
- 4. ISO 14044: 2006/AMD 1:2017/ AMD 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- 5. SCS Type III Environmental Declaration Program: Program Operator Manual. V11 November 2021. SCS Global Services.
- 6. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI). Dr. Bare, J., <a href="https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracing-control-reduction-and-assessment-chemicals-and-other-environmental-impacts-chemicals-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-impacts-chemical-and-other-environmental-and-other-environmental-and-other-environmental-
- Ecoinvent Centre (2021) ecoinvent data from v3.8. Swiss Center for Life Cycle Inventories, Dübendorf, 2021, http://www.ecoinvent.org.
- 8. US EPA. Advancing Sustainable Materials Management:2018 Fact Sheet Assessing Trends in Materials Generation and Management in the United States. November 2020. https://www.epa.gov/sites/production/files/2020-11/documents/2018 ff fact sheet.pdf.
- Product Category Rule for Environmental Product Declarations, BIFMA PCR for Seating: UNCPC 3811 Version 3, NSF International, Extended 12 months per PCRext 2021-108 valid to September 30, 2022.
- 10. Notarnicola, B., et al., *Life cycle assessment of Italian and Spanish bovine leather production systems*. https://www.researchgate.net/publication/248707414. May 2011.

For more information contact:

DIVISION TWELVE

Division Twelve

1450 Birchmount Rd Toronto, ON, M1P 2E3 1.800.724.5665 | www.division12.com

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.510.452.8000 | fax +1.510.452.8001

© 2022 SCSglobalServices.com